Controlling Size in Multicellular Organs: Focus on the Leaf
نویسنده
چکیده
Unsolved Mystery L eaf size depends on cell number and size. However, leaves are not simply the sum of cell size and number; rather, they are under the control of an unknown, organ-wide integration system. The existence of such a system is strongly suggested by two mysterious phenomena: compensation and high-ploidy syndrome. Compensation is characterized by cell enlargement triggered by a significant decrease in cellular proliferation, while plants with high-ploidy syndrome have more than eight sets of homologous chromosomes (8C), resulting in an increase in cell volume, but smaller leaves. Determining the mechanisms underlying these phenomena will provide important insight into the mechanism of multicellular organogenesis. In 1998, I noticed an unusual phenomenon in plants involving a decrease in the number of cells in the leaf lamina with a consequent increase in cell volume. I called this phenomenon " Hosho-sayou, " which is Japanese for " compensation " [1], because I considered the inverse relationship (a decrease in cell number with an increase in cell volume) to be the most important feature, although the effect on leaf area was often incomplete. At that time, a limited number of examples were available to support the existence of such a relationship; however, additional evidence continues to accumulate. In 2002, having become convinced of the generality of the relationship, I adopted the English word " compensation " [2]. Gerrit Beemster of Ghent University (Belgium) also named this phenomenon compensation the following year [3]. We have since found that compensation occurs specifically in leaves and related lateral organs with a determinate fate (i.e., those organs that are under strict control in terms of when organogenesis starts and finishes), and not in indeterminate organs such as roots [4]. This likely reflects the presence of an unknown integration system that oversees cell division and expansion in determinate organs [5]. The details of this system are, at present, entirely unknown. Understanding the mechanism of multicellular organogenesis, many aspects of which remain mysterious, is one of the major goals of modern biology. The mechanisms that integrate cellular proliferation with organ size in animals are also not yet understood [6,7]. As is widely known (even in Greek mythology), the size of the human liver is strictly controlled, and if most of the liver is surgically removed, it will regenerate to the proper size. Researchers have hypothesized a " total-mass checkpoint " mechanism(s) to explain this phenomenon [7], but, again, …
منابع مشابه
Anatomical and Morphological Properties of Trichomes in Four Iranian Native Salvia Species under Cultivated Conditions
The morphological specifications play a substantial role in classification and breeding programs of various plant taxa. In the current study, some macro- and micro-morphological features of Salvia nemorosa, Salvia syriaca, Salvia frigida and Salvia virgata (three accessions), were investigated using scanning electron microscopy and image analysis program. The completely randomized design (CRD) ...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملRegulation of organ size: insights from the Drosophila Hippo signaling pathway.
Organ size control is a fundamental and core process of development of all multicellular organisms. One important facet of organ size control is the regulation of cell proliferation and cell death. Here we address the question, What are the developmental mechanisms that control intrinsic organ size? In several multicellular animals including humans and flies, organs develop according to an inst...
متن کاملThe role of JAGGED in shaping lateral organs.
Position-dependent regulation of growth is important for shaping organs in multicellular organisms. We have characterized the role of JAGGED, a gene that encodes a protein with a single C(2)H(2) zinc-finger domain, in controlling the morphogenesis of lateral organs in Arabidopsis thaliana. Loss of JAGGED function causes organs to have serrated margins. In leaves, the blade region is most severe...
متن کاملResponse of Almond Genotypes/Cultivars Grafted on GN15 ‘Garnem’ Rootstock in Deficit-Irrigation Stress Conditions
This study was conducted to evaluate the response of Iranian promisinglate blooming almond genotypes to deficit-irrigation stress on GN15 rootstock. One-year old plants subjectedto three deficit-irrigation, including moderate and severe stress (soil water potential, Ψsoil = -0.8 and -1.6 MPa, respectively) and a control treatment (Ψsoil= -0.33 MPa), were applied for six weeks to five grafting c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 6 شماره
صفحات -
تاریخ انتشار 2008